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A lattice-Boltzmann method has been developed to simulate suspensions of both
spherical and non-spherical particles in finite-Reynolds-number flows. The results for
sedimentation of a single elliptical particle are shown to be in excellent agreement with
the results of Huang, Hu & Joseph (1998) who used a finite-element method. Sedi-
mentation of two-dimensional circular and rectangular particles in a two-dimensional
channel and three-dimensional spherical particles in a tube with square cross-section
is simulated. Computational results are consistent with experimentally observed phe-
nomena, such as drafting, kissing and tumbling.

1. Introduction
Spherical and non-spherical particles in flows at finite Reynolds number oc-

cur in a variety of industries, such as the petroleum and paper industries. This
subject has been studied theoretically and experimentally for many years. Nu-
merical simulations have been extensively used to simulate complex particle–fluid
systems. Stokesian simulations were developed by Brady & Bossis (1988) to deal with
the motion of many particles in Stokes flow. These simulations are appropriate for
colloidal particles at very small Reynolds numbers. Chang & Powell (1993) conducted
Stokesian simulations for a bimodal suspension of spherical particles. However, for
finite-Reynolds-number flows, the inertial term has a significant influence on the
behaviour of solid particles and fluid. In such systems, the Navier–Stokes equations
should be solved to produce valid results. Johnson & Tezduyar (1997) conducted a
three-dimensional simulation using a space–time finite-element method advocated by
Hughes, Franca & Mallet (1987) and Tezduyar et al. (1992). The sedimentation of 100
solid spheres in a tube at a Reynolds number of 100 was simulated. Joseph’s group
(Hu, Joseph & Crochet 1992; Feng, Hu & Joseph 1994a, b) developed a direct simula-
tion of the two-dimensional motion of circular and elliptical particles in sedimenting,
Couette, and Poiseuille flows of a Newtonian fluid at particle Reynolds numbers in
the hundreds. Recently, Hu (1996) simulated the motion of 400 circular particles in
sedimenting and shear flows at particle Reynolds numbers up to hundreds.

All the simulations mentioned above are based on the finite-element or finite-
difference method. An approach, called lattice-Boltzmann (LB) simulation, has been
developed to simulate suspensions including three-dimensional spherical, non-spherical
particles (Ladd 1994a, b; Aidun & Lu 1995; Qi 1997a, b) and deformable membranes
(Aidun & Qi 1998). This work develops the LB method to simulate spherical and
non-spherical particles in finite-Reynolds-number flows. The validity of this approach
is demonstrated.
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A brief review of the LB method is given in § 2.1. An improvement to the Ladd
approach is described in § 2.2. A summary of calculations for three-dimensional
rotation is given in § 2.3. The results of the LB method for the sedimentation of a single
elliptical particle at particle Reynolds numbers Re = 0.31, 0.82 and 16.8 are compared
with the finite element results in § 3.1. Sedimentation of two-dimensional circular
particles is simulated in § 3.2, and of two rectangular particles in § 3.3. Sedimentation
of two three-dimensional spheres is modelled in a tube in § 3.4. Conclusions are drawn
in the final section.

2. Theoretical method
Lattice-gas automata and the three-dimensional lattice-Boltzmann method

(Wolfram 1986; d’Humieres, Lallemand & Frisch 1986; d’Humieres & Lallemand
1987; Frisch et al. 1987; McNamara & Zanetti 1988; Qian, d’Humieres & Lallemand
1992; Dahlburg, Montgomery & Doolen 1987) have been developed to simulate the
interaction between fluid and solid particles. These methods have become useful tools
to solve the Navier–Stokes equations in suspensions and in complex random porous
media (Gunstensen & Rothman 1991a, b). The LB method simulates fluid motion at a
microscopic level, similar to a molecular dynamic simulation. It has been proven that
the Navier–Stokes equations are fully recovered at the macroscopic scale through a
Chapman–Enskog-like expansion (Chen, Chen & Matthaeus 1992).

A lattice-gas method was developed to simulate 100 colloidal particles by Ladd,
Colvin & Frenkel (1988) and Ladd & Frenkel (1990). A collision rule in the lattice-
gas method was proposed to deal with the moving boundaries. Later, Ladd (1994a)
extended the LB method to model spherical particles. He simulated two-dimensional
circular and 32 000 three-dimensional spherical particles (Ladd 1996, 1997) using the
extension. Suspensions of spherical particles and their rheological properties at a high
concentration were simulated by Aidun & Lu (1995). Three-dimensional rotation and
translations of non-spherical particles including ellipsoid, cylinders, and cubic-shaped
particles were modelled with the LB method by Qi (1997a–c) and Aidun, Lu & Ding
(1998). A brief review of the method follows.

2.1. Lattice-Boltzmann method

In the LB method, the fluid particles reside at nodes in a lattice and move to
neighbouring nodes. The fluid particle movement represents real fluid flows through
a distribution function of fluid particle density. There are two speeds of moving fluid
particles in addition to fluid particles at rest. The particles of speed σ = 1 move
along links of the lattice in axial directions and the particles of speed σ = 2 move
along the diagonal links of the lattice. The solid particles are discretized and move
across the stationary lattice. The hydrodynamic forces and torques acting on the
solid particle can be determined from a summation of the momentum of all the
fluid particles hitting the solid particle boundaries. Then the motion of the solid
particles is determined at each time step from the forces and the torques by using
Newton’s second law, called molecular dynamics simulations in computer simulation
terminology. In principle, this simulation method is very flexible. Solid particle size
and shape, electrostatic interactions, flow geometry, Péclet number, and Reynolds
number can all be varied independently.

In this work, a 9-bit model is employed for two-dimensional case and a 15-bit
model for three-dimensional (Qian 1990) case. Although, the simulations do not
involve bit-wise operations, the terms ‘9-bit’ and ‘15-bit’ are maintained for historical
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σ i eσix eσiy |eσi| σ i eσix eσiy |eσi|
1 1 1 0 1 2 1 1 1

√
2

1 2 −1 0 1 2 2 −1 −1
√

2

1 3 0 1 1 2 3 −1 1
√

2

1 4 0 −1 1 2 4 1 −1
√

2

Table 1. Velocity vector for cubic lattice in two dimensions.

σ i eσix eσiy eσiz |eσi| σ i eσix eσiy eσiz |eσi|
1 1 1 0 0 1 2 1 1 1 1

√
3

1 2 −1 0 0 1 2 2 −1 −1 −1
√

3

1 3 0 1 0 1 2 3 −1 1 1
√

3

1 4 0 −1 0 1 2 4 1 −1 −1
√

3

1 5 0 0 1 1 2 5 −1 −1 1
√

3

1 6 0 0 −1 1 2 6 1 1 −1
√

3

2 7 1 −1 1
√

3

2 8 −1 1 −1
√

3

Table 2. Velocity vector for cubic lattice in three dimensions.

reasons. Complete lists of the velocities of fluid particles, eσi, are given in table 1 for
the two-dimensional case and in table 2 for three-dimensional case.

The lattice-Boltzmann (LB) equation with a single relaxation time (Chen et al.
1992) is

fσi(x+ eσi, t+ 1)− fσi(x, t) = −1

τ
[fσi(x, t)− f(0)

σi (x, t)], (2.1)

where fσi(x, t) is the fluid particle distribution function, f(0)
σi (x, t) is the equilibrium

distribution function (EDF) at (x, t) and τ is the single relaxation time. The kinematic
viscosity ν is related to τ by ν = (2τ− 1)/6. In the simulations, f(0)

σi (x, t) is taken as

f
(0)
σi (x, t) = Aσ + Bσ(eσi · u) + Cσ(eσi · u)2 + Dσu

2, (2.2)

where σ = 1 corresponds to the fluid particles moving to the near-neighbours along
axial directions; σ = 2 corresponds to the fluid particles moving to their second-
near neighbours along diagonal directions; σ = 0 and i = 0 correspond to the fluid
particles at rest; eσi is the vector of both lattice spacing and fluid particle velocity;
u is the mean velocity of fluid particles. Following the Ladd method (Ladd 1994a),
appropriate coefficients are found for the two-dimensional case:

A1 = 1
9
ρf, B1 = 1

3
ρf C1 = 1

2
ρf, D1 = − 1

6
ρf,

A2 = 1
36
ρf, B2 = 1

12
ρf C2 = 1

8
ρf, D2 = − 1

24
ρf,

A0 = 4
9
ρf, D0 = − 2

3
ρf;

 (2.3)
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and for the three-dimensional (Qian 1990) case:

A1 = 1
9
ρf, B1 = 1

3
ρf C1 = 1

2
ρf,

D1 = − 1
6
ρf, A2 = 1

72
ρf, B2 = 1

24
ρf,

C2 = 1
16
ρf, D2 = − 1

48
ρf, A0 = 2

9
ρf,

D0 = − 1
6
ρf,


(2.4)

where ρf is the density of the fluid.

2.2. Hydrodynamic forces on a solid particle

Ladd’s (1994a) approach can be divided into two parts: the first accounts for the
moving boundary conditions and the second part is to calculate the hydrodynamic
forces exerted on solid particles.

Regarding the first part, if the solid is stationary, a no-slip boundary condition
is easily implemented by using the bounce-back method. However, the bounce-back
method is not suitable for moving boundaries and must be modified. Ladd proposed
a collision rule which is given by

fσi′(x, t+ 1) = fσi(x, t+)− 2Bσ(eσi · Vb), (2.5)

where x is the position of the node adjacent to the solid surface with velocity Vb, t+ is
the post-collision time, as defined in Ladd (1994a), i′ denotes the reflected direction,
and i the incident direction. The above rule is applied to the boundary nodes on both
sides of the solid surface. As a result, the velocity of the solid boundary matches the
velocity of the fluid. In other words, a no-slip boundary condition for moving solid
particles is imposed correctly by Ladd’s collision rule in such a way that the fluid
mass is conserved at each time step by allowing exchange of population of fluid at
the boundary nodes adjacent to both sides of the solid surface.

The hydrodynamic force exerted on the solid particle at the boundary node is

F(x+ 1
2
eσi) = 2eσi(fσi(x, t+)− Bσ(Vb · eσi)), (2.6)

where Vb = V +Ω× xb; V is the velocity of the centre of mass of a solid particle; Vb
is the velocity of the solid–fluid interface at the node; Ω is the angular velocity of the
solid particle; xb = x+ 1

2
eσi − R, where R is the centre of mass of the corresponding

solid particle. The total force FT and torque TT on the solid particles are

FT =
∑

F(x+ 1
2
eσi) (2.7)

and

TT =
∑

(x+ 1
2
eσi − R)× F(x+ 1

2
eσi). (2.8)

The summation is over all the boundary nodes in both the solid and fluid regions.
When the effective density, ρe = ρs − ρf , of the solid particle is used for updating
the motion of the solid particles in Newtonian dynamics (Ladd 1994a), where ρs is
the solid density, the results from Ladd’s approach are in excellent agreement with
the finite-element results. A comparison will be made in the results section. The
advantage of this method is that the computational implementation is simple, and
dynamical simulations are very stable. A small simulation box may be used to reach
a high Reynolds number. However, a disadvantage is that this method cannot handle
a solid density less than that of the fluid.
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Therefore, seeking an improvement to the Ladd approach is necessary. Aidun et al.
(1998) attempted to improve Ladd’s approach by removing the fluid within the solid
region.

In the lattice-Boltzmann method, the nodes are fixed and the solid particles move
across the nodes (grids). A boundary node in the fluid region at a previous time step
may enter the solid region at the next time step. Therefore, the flow at the node
should exert a force FI on the solid particle

FI (x, t) = ρf(x, t)u(x, t), (2.9)

where ρf is the density of the fluid at the node. Similarly, a boundary node originally
within the solid region may be within the fluid region at the next time step. The flow
at the node should exert a force FO on the solid particle, i.e.

FO(x, t) = −ρf(x, t)u(x, t). (2.10)

The forces and torques should be added to the total force and torques, while the force
and torque from equations (2.7) and (2.8) at interior nodes of a solid should not add
to the total force in the present method. The equations (2.9) and (2.10) are essentially
the same as those suggested in Aidun et al. (1998).

There are good reasons to allow fluid to enter the solid region as Ladd did. First,
the total mass of fluid in the simulation box is strictly conserved at each time step.
This restriction guarantees recovery of the Navier–Stokes equations from the LB
method. Second, in the present method, the function of the fluid within the solid
region is to ensure that the Navier–Stokes equations are followed in the fluid region.

2.3. Three-dimensional rotation and translation of non-spherical particles

A proper calculation for the rotation of non-spherical particles in a three-dimensional
space is important in simulations. The problem has been discussed by Qi (1997a, b).

The orientation of a rigid solid body specifies the relation between a laboratory
coordinate system and a body coordinate system which is fixed on the rigid solid
body. The Euler angles φ, θ and ψ are used to describe the three-dimensional rotation
of the body (Goldstein 1980). The body coordinate system is rotated around the z-axis
by φ, then rotated around the x′-axis by θ and rotated again around the new z′-axis
by ψ. The inertia tensor of the particle is diagonal in the body coordinate system.

The motion of rotation is governed by the Euler equations, which are written

Ω̇x =
τx

Ixx
+
Iyy − Izz
Ixx

ΩyΩz, (2.11)

Ω̇y =
τy

Iyy
+
Izz − Ixx
Iyy

ΩzΩx, (2.12)

Ω̇z =
τz

Izz
+
Ixx − Iyy
Izz

ΩxΩy, (2.13)

where Ωx, Ωy and Ωz are the angular velocities in the body coordinate system, and τx,
τy and τz are the torques exerted on the solid particle in the same coordinate system.
Ixx, Iyy and Izz are the inertia of the solid particles. Unfortunately, use of the Euler
angles results in a singularity in the equations of motion whenever θ approaches 0
or π. Therefore, Euler angles are not appropriate for solving the equation directly,
instead four quaternion parameters must be used as generalized coordinates (Evans
1977; Evans & Murad 1997) to avoid the singularity. The relationships between the
quaternion parameters and the Euler angles are defined by
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q0 = cos 1
2
θ cos 1

2
(φ+ ψ), (2.14)

q1 = sin 1
2
θ cos 1

2
(φ− ψ), (2.15)

q2 = sin 1
2
θ sin 1

2
(φ− ψ), (2.16)

and

q3 = cos 1
2
θ sin 1

2
(φ+ ψ). (2.17)

The transformation matrix from the coordinate system to the body coordinate system
is given by q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

 . (2.18)

The quaternion for each solid particle satisfies the equations of motion q̇0

q̇1

q̇2

q̇3

 =

 q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0


 0

Ωx
Ωy
Ωz

 . (2.19)

Equations (2.11), (2.12), (2.13) and (2.19) are solved by using the Gear predictor-
corrector method (Gear 1971).

The translations of the centre of mass of each particle are updated at each
Newtonian dynamic time step by using a so-called half-step ‘leap-frog’ scheme which
is popular in molecular dynamic simulations (Allen & Tildesley 1987). The scheme is
written as

V (t+ 1
2
δt) = V (t− 1

2
δt) + δtF (t)/M, (2.20)

R(t+ δt) = R(t) + δtV (t− 1
2
δt) + δt2F (t)/M + O(δt4), (2.21)

where R is the position of the centre of mass of a solid particle, F is the total force
on the solid particle, M is the mass of the solid particle.

Both the position and velocity of solid particles in equations (2.20) and (2.21)
are expanded in the time interval δt explicitly. Therefore the time step δt for solid
particles should be less than 1 to ensure accuracy within the fourth order of δt (Allen
& Tildesley 1987). This is a standard technique in molecular dynamics simulations.
The same applies to the calculation of the three-dimensional rotation of solid particles.

In the following sections, the present approach is applied to several simulation
problems.

3. Simulations and results
3.1. Sedimentation of a single two-dimensional ellipse

For comparison, a single ellipse sedimenting under gravity is simulated under the
same conditions as used by Huang, Hu & Joseph (1988), who solved the problem
using a finite-element method. The elliptic particle rests initially at the middle of
a two-dimensional channel and the major axis of the ellipse tilts at 135◦ with the
horizontal direction. The width of the channel is 5 times of the length of the major
axis D. The ratio of the length of the major axis to the short axis of the ellipse is 1.5
and the size of the simulation box is 101 × 700. The elliptic particle is heavier than
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Figure 1. Comparison of the LB results with Huang et al. (1988) results for an ellipse sedimenting
in a two-dimensional channel. (a) Displacement x as a function of y is shown; x is the horizontal
direction and y is the gravity direction or vertical direction. (b) Rotational angles as a function of y
are shown. Note that at Re = 0.32 the ellipse axis approaches 90◦ or horizontal, while at Re = 0.31
the ellipse adopts a 180◦ or vertical orientation. LB results are in excellent agreement with the
results of Huang, Hu & Joseph (1998).
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Figure 2. Comparison of the LB results for the displacement of an ellipse with Huang & Joseph’s
unpublished results at Re = 16.8. The dashed lines are the results from the Ladd approach.

the fluid and settles by gravity. The ratio of solid density to fluid density is 1.0015 for
final particle Reynolds number Re = 0.31, and 1.005 for Re = 0.82. The final particle
Reynolds number is defined by Re = VfD/2ν, where Vf is the final velocity of the
particle. The inflow boundary is always placed 15D ahead of the elliptic particle and
the flow velocity at the boundary is zero. The outflow boundary is always 20D behind
the particle and the derivatives of flow velocity in x- and y-directions at the boundary
are equal to zero.

The LB results are compared with the finite-element results obtained recently by
Huang et al. (1998). Excellent agreement between two methods is clearly seen from
figure 1. In all the figures of this work, displacement has been normalized by D, time
normalized by D/Vf , velocity by Vf , and angular velocity by Vf/D, unless otherwise
specified. Figure 1 shows that the lubrication pressure turns the ellipse vertical and
it executes a damped oscillation as it drifts to the channel centre for the case of
Re = 0.31, while the force couples on the long axis turn the ellipse horizontal for the
case of Re = 0.82 as it migrates to the channel centre. The final position of the ellipse
is slightly shifted from the channel centre with an error of 2.3% in the simulation
box of 101× 700 and with an error of 2.0% in a simulation box of 151× 1050. This
error is caused by discretization of the solid particle.

It has been pointed out by D. D. Joseph that it was originally thought that the ellipse
would turn horizontal at any Reynolds number greater than zero. However, Joseph’s
new findings are confirmed by his experiment and simulation and are reproduced
here.

To further evaluate the reliability of the LB method, a simulation of the sedimen-
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Figure 3. Comparison of the velocity in the x- and y- direction of LB results with Huang &
Joseph’s unplublished results for an ellipse sedimenting in a two-dimensional channel at Re = 16.8.
The negative value of the velocity of particle settling under gravity is Vy . The same applies to the
other figures.

tation of an ellipse is carried out for the case of Re = 16.8 using present approach.
The ratio of the major axis length (D = 28) to the short axis of the ellipse is 2 and
the ratio of the solid density to the fluid density is 1.5. The simulation box size is
113 × 1260. The ellipse is placed at x = 0.375W , where the width of the channel
W = 4D. The tilting angle of the major axis with the horizontal direction (x-axis) is
135◦. The inflow boundary is always 25D ahead of the particles and the derivative of
the flow velocity at the boundary is zero. The outflow boundary is always 20D behind
the particle and the flow velocity at the boundary is zero, i.e. the inflow and outflow
boundaries move with the solid particle during the simulation. The results for the
simulations are shown in figure 2 to figure 4 and compared with unpublished 1997
results of P. Y. Huang & D. D. Joseph (available from the author). Figure 2 shows
the displacement of the ellipse: the dash-line is the result obtained by using the Ladd
approach; the solid line is the present result; and the diamonds are the results of
Huang & Joseph. It is obvious that both the present results and those obtained using
the Ladd approach agree with the finite-element results. Figure 3 shows the velocities
of the ellipse in the x- and y-directions, and figure 4 shows the rotation angle and
angular velocity. All quantities including velocities and tilting angles in these figures
are in excellent agreement with the finite-element results. At Re = 16.8, the position
of the ellipse oscillates periodically around the centre of the channel, and the tilting
angle oscillates around 180◦. This is consistent with the experimental observation that
the long axis of an ellipse is perpendicular to streamlines of the flows. The same
simulations are repeated in a large simulation box of 168×1890. Essentially the same
results are obtained.
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Figure 4. Comparison of the rotational angles and the angular velocities of the LB results with
Huang & Joseph’s unpublished results for an ellipse sedimenting in a two-dimensional channel at
Re = 16.8.

3.2. Sedimentation of two circular particles in two-dimensions

An important feature of suspensions in finite Reynolds number flows is the so-called
drafting, kissing, and tumbling (DKT) which was first experimentally discovered by
Joseph et al. (1987) and then confirmed by computer simulations (Feng et al. 1994a, b).
When solid particles sediment under gravity, the trailing particle will approach the
leading particle due to the low pressure in the wake of the leading particle. This is
the drafting stage. Then the trailing particle is accelerated and rapidly sucked into
the wake, and the particle contacts the leading particle. This is called kissing. The
alignment of two particles in the stream direction is not stable. A slight misalignment
will push the front particle aside; the particle behind takes the lead; and then they
are separated (dispersed). This is called tumbling. DKT may repeat many times
and is a feature of Navier–Stokes flows in which inertia is important. Stokes flow
does not have this feature. The scenario of DKT is used to test simulations of
the finite Reynolds number suspension. The simulation of sedimentation of two
circular particles is conducted in a box with a size of 121 × 405. The diameter of
the particles D is 15. The two circular particles are put 2D apart along the gravity
direction and aligned at x = 0.25W . The outflow boundary is kept at 15D behind the
particle and the inflow boundary is 10D ahead of the particle during the simulation.
The flow velocities at the boundaries are the same as before. The initial outflow
boundary is at y = 405 and gravity is in the negative y-direction, while the initial
inflow boundary is at y = 0. The ratio of solid density to fluid density is 2 and
the particle Reynolds number is 5.6. The trailing particle becomes the leading one
at t = 11 and t = 58 as shown in figure 5. The two particles exchange positions
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Figure 5. The displacements in the x- and y-directions as a function of time for two circular
particles sedimenting in a two-dimensional channel at Re = 5.6.
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sedimenting in a two-dimensional channel at Re = 5.6.
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Figure 7. The rotation angles and angular velocities as a function of time for two circular
particles sedimenting in a two-dimensional channel at Re = 5.6.
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Figure 8. The displacements in the x- and y-directions as a function of time for two rectangular
particles sedimenting in a two-dimensional channel at Re = 1.1.
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Figure 9. The velocities in the x- and y-directions as a function of time for two rectangular
particles sedimenting in a two-dimensional channel at Re = 1.1.
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Figure 11. The displacements in the x- and y-directions as a function of time for two rectangular
particles sedimenting in a two-dimensional channel at Re = 31.7.

in the settling direction twice. The velocity in the settling direction increases when
the trailing particle catches up with the leading particle as shown in figure 6. The
large variation of the velocities during kissing reflects the strong interaction when
two particles approach each other. Meanwhile, they rotate in different directions.
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Figure 12. The velocities in the x- and y-directions as a function of time for two rectangular
particles sedimenting in a two-dimensional channel at Re = 31.7.

The original leading particle rotates in the counter-clockwise direction, it seems to
climb the channel wall as it settles, while the trailing particle rotates in the clockwise
direction. They almost stop rotating after t = 70 as shown in figure 7. DKT is fully
reproduced by this simulation.
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Figure 13. The angles and angular velocities as a function of time for two rectangular particles
sedimenting in a two-dimensional channel at Re = 31.7.

3.3. Sedimentation of two rectangular particles

Before conducting a three-dimensional simulation, let us examine the behaviour of
two rectangular particles sedimenting in a two-dimensional channel.

The size of the simulation box is 161× 540 and the size of the rectangular particle
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Figure 14. The displacement in (a) the x-direction and (b) the y-direction as a function of time
with final Re = 13.1.

is 20 × 10. The outflow boundary is placed at y = 540 and the inflow boundary at
y = 0 initially. The two rectangular particles are 2D apart along the gravity direction
and aligned at x = 0.25W . The width W of the simulation box is 8 times of the
length D of the longer edge of the particle. The outflow boundary is always kept at
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Figure 15. The velocities in the x- and y-directions as a function of time with final Re = 13.1.

15D behind the trailing particle and the inflow boundary is always at 10D ahead of
the leading particle during the simulation. The flow velocities at the boundaries are
the same as before. The ratio of the solid density to the fluid density is 2 and the
final particle Reynolds number for the simulation is Re = 1.1. The results are shown
on figure 8 to figure 10. DKT occurs quickly at t = 7 and t = 13 for the rectangular
particles as shown in figure 8.

It seems that a steady solution is obtained for this case. After one oscillation, the
particles reach a steady state. The velocity in the x-direction approaches zero and the
velocity in the y-direction becomes a constant. The original leading particle rotates in
the counter-clockwise direction and approaches 180◦. The other rectangular particle
rotates in the opposite direction, then returns to zero. Both particles turn horizontal
due to the turning couples on the long body as they settle steadily.

Another simulation is carried out at the same conditions except that the particle
Reynolds number is Re = 31.7. A strong oscillation is obtained and is shown in
figures 11 to 13. DKT occurs during sedimentation. There are four crossings at
approximately t = 8, t = 15, t = 49 and t = 56 as shown in figure 11. The
velocities in the x- and y-directions actively oscillate as shown in figure 12. The
amplitude of the velocity oscillation becomes larger when they are kissing. The angles
of the two particles oscillate around zero showing that the longer edges of the
rectangular turn horizontal. The two particles rotate in opposite directions and have
a larger oscillation amplitude when they are kissing. Then, the amplitude decreases
after tumbling as shown in figure 13. When the next DKT occurs, the amplitude
of velocity of particles including angular velocity increases again. Such a cycle is
repeated.
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Figure 16. (a) The rotation angles and (b) angular velocities as a function of time with final
Re = 13.1.

3.4. Sedimentation of two spherical three-dimensional particles

Sedimentation of two spherical particles under gravity, in a tube with square cross-
section, is simulated. The size of the simulation box is 64 × 80 × 64. The gravity
force is along the y-axis in the negative direction. The diameter D of the spherical
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particles is 12.4 and their initial coordinates in the x- and y-directions can be read
from figure 14(a,b) and those in the z-direction are in the centre of channel, which
never changed during sedimentation due to wall effects. The ratio of the density of
the spherical solid particles, to the fluid density is 1.005. As the spheres fall in the
tube, one of them is accelerated to a higher velocity than other sphere, due to a
low pressure caused by the wake of the leading sphere. The trailing particle catches
the leading particles at t = 23 as shown in figure 14(b). The velocities in the x- and
y-directions as a function of time are shown in figure 15 and the angles and angular
velocities as a function of time are shown in figure 16. The large change of velocities
indicates the strong interaction when two spheres approach each other. The final
particle Reynolds number is Re = 13.1 for this simulation. Again, drafting, kissing
and tumbling are reproduced in this three-dimensional simulation correctly.

4. Conclusions
(a) The LB method has been developed to simulate particles in finite-Reynolds-

number flows. The method is accurate, compared with the finite-element results. Using
this method, the simulations are dynamically stable.

(b) The LB results obtained by using the improved approach for an ellipse sedi-
menting at Re = 0.31, 0.82 and 16.8 are compared with the results obtained with
the finite-element method. The present results are in excellent agreement with the
finite-element results. Therefore, the LB method is shown to be reliable for both zero-
and finite-Reynolds-number flows.

(c) DKT is reproduced for two circular particles in a two-dimensional channel.
(d) DKT occurs for two rectangular particles. A steady solution is obtained at small

particle Reynolds number and a dynamically oscillating solution is observed at high
Reynolds numbers. The long edges turn horizontal for these rectangular particles.

(e) Sedimentation of two three-dimensional spherical particles has been simulated
in a tube with square cross-section and DKT is correctly reproduced.
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suggestions, several readings of the manuscript. The author also greatly appreciates
Professor Daniel Joseph for his critical reading of the manuscript and valuable
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